
PyObjC Hacking

Author

Bob Ippolito
Conference

PyCon DC, March 2005

Intended Audience

• Python developers using Mac OS X 10.3 or later
• ... that aren't (very) afraid of C
• Who probably know a little about Objective-C
• ... and want to do some crazy stuff on their Mac

Topics

• Objective-C Runtime Tricks
• Wrapping Frameworks
• Writing Plug-Ins
• Code Injection

Objective-C Runtime Tricks

• Classes
• ... at runtime
• Categories
• ... think mix-in
• Protocols
• ... think interface
• Selectors
• ... (not) everything is an object

Classes

• Are first-class objects
• Have a flat namespace
• The runtime is dynamic

Flat class namespace

>>> import objc
>>> objc.getClassList()
(<objective-c class NSRecursiveLock at 0xa0a055f8>,
 <objective-c class NSintNumber at 0xa0a06528>,
 <objective-c class NSRandomSpecifier at 0xa0a06d38>,
 ...)
>>> objc.lookUpClass('NSArray')
<objective-c class NSArray at 0xa0a037f8>

Dynamic runtime support

>>> import objc
>>> objc.lookUpClass('NSApplication')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
objc.nosuchclass_error: NSApplication
>>> import AppKit
>>> objc.lookUpClass('NSApplication')
<objective-c class NSApplication at 0xa2df8358>

Categories

• Used to add specific functionality to a class
• ... after it was created
• For example, AppKit adds drawing code to Foundation

classes
• ... can be used to replace functionality

NSDate_gmtime.py

from Foundation import *
import objc
class NSDate(objc.Category(NSDate)):
 def gmtime(self):
 return time.gmtime(self.timeIntervalSince1970())

Loading the Category

>>> from Foundation import *
>>> now = NSDate.date()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 AttributeError: 'NSCFDate' object has no attribute 'gmtime'
>>> import NSDate_gmtime
>>> NSDate.date().gmtime()
(2005, 3, 22, 23, 41, 33, 1, 81, 0)
>>> now.gmtime()
(2005, 3, 22, 23, 40, 39, 1, 81, 0)

NSString_mangledIntValue.py

from Foundation import *
import objc
class NSString(objc.Category(NSString)):
 def intValue(self):
 # "self" is a real NSString here
 # not pretending to be unicode
 try:
 return int(self.UTF8String(), 0)
 except ValueError:
 return 0

Don't Try This At Home!

>>> import objc
>>> s = NSString.stringWithString_(u'0666')
>>> s.intValue()
666
>>> import NSString_mangledIntValue
>>> s.intValue()
438

Protocols

• A way to declare formal interfaces without inheritance
• ... that can be checked at runtime
• Looks like an @interface block
• Not often useful, but some applications use it to verify

plugins

Getting a Protocol

>>> import objc
>>> objc.protocolNamed('NSObject')
<objc.formal_protocol NSObject at 0x5f160>

Checking Protocol conformance

>>> import objc
>>> NSCoding = objc.protocolNamed('NSCoding')
>>> o = NSObject.alloc().init()
>>> o.conformsToProtocol_(NSCoding)
0

Declaring Protocol conformance

import objc
NSLocking = objc.protocolNamed('NSLocking')
class DoesntReallyConformTo(NSObject, NSLocking):
 # if it conformed, there would be
 # an implementation here
 pass

Creating new Protocols

import objc
MyProtocol = objc.formal_protocol(
 "MyProtocol",
 None,
 [
 objc.selector(
 None,
 selector='mymethod',
 signature='v@:',
),
],
)

Selectors

• Is the "name" of a message that can be sent
• Each colon in the name denotes an argument
• Objective-C message syntax mixes the selector and its

arguments
• ... PyObjC does not (can't)
• ... and it uses underscores instead of colons
• Normally the defaults are good for PyObjC
• ... unless the selector is used dynamically by Objective-C

code
• Type signature is preserved by the Objective-C compiler

(yay!)

Inspecting a Selector

>>> from Foundation import *
>>> sel = NSData.dataWithBytes_length_
>>> sel.selector
'dataWithBytes:length:'
>>> sel.signature
'@16@0:4r^v8I12'

Implementing non-default Selector

from Foundation import *
import objc
import random

class NeedsToReturnInts(NSObject):
 def anInt(self):
 return random.randint(-1000, 1000)
 anInt = objc.selector(anInt, signature='i@:')

Type@:{Signatures=i@c}?!

• Look like line noise
• We don't offer a way to explain them
• Or an easy way to compose them
• But our docs point to the relevant Apple docs

Wrapping Frameworks

• There are a bunch of cool third party frameworks you can
use

• You can grab useful stuff from C frameworks we don't
wrap

• We can't commit Tiger code yet, so you have to wrap
those by hand

• Fortunately it's easy enough

DiscRecording.py

import objc as _objc
this can be an absolute path too
_path = _objc.pathForFramework('DiscRecording.framework')
_objc.loadBundle(
 'DiscRecording',
 globals(),
 bundle_path=_path,
)

Poking at DiscRecording

>>> from DiscRecording import *
>>> print u'\n'.join([
... device.displayName()
... for device in DRDevice.devices()
...])
MATSHITA DVD-R UJ-815

Plugins

• Built like a framework, but is runtime loadable code
(MH_BUNDLE)

• Python isn't great at this, damned global state!
• ... but it's good enough (that's what I tell myself, anyway)

Where are they used?

• Services (bad idea, every process gets them)
• ... but there is a process-based API too
• Input Managers (bad idea, every process gets them)
• Screen Savers
• Interface Builder palettes
• To extend existing Cocoa applications (QuickSilver, etc.)
• To bootstrap the evil that is objc.inject

Plugin Guidelines

• Usually have to set a custom NSPrincipalClass in the
Info.plist

• One and only one Python per process
• ... shared sys.modules, etc.
• Global state = Ugh.

setup.py for SillyBallsSaver

from distutils.core import setup
import py2app

plist = dict(
 NSPrincipalClass='SillyBalls',
)

setup(
 plugin=['SillyBalls.py'],
 data_files=['English.lproj'],
 options=dict(py2app=dict(
 extension='.saver',
 plist=plist,
)),
)

objc.inject

• Think "gdb attach"
• Lots of possibilities
• Loads a Python plugin into any app
• A great way to crash
• Module-level code is NOT EXECUTED IN THE MAIN

THREAD

objc.inject syntax

import objc
objc.inject(<pid>, full_path_to_bundle)

Questions?

Go ahead, ask.

	PyObjC Hacking
	Intended Audience
	Topics
	Objective-C Runtime Tricks
	Classes
	Flat class namespace
	Dynamic runtime support
	Categories
	NSDate_gmtime.py
	Loading the Category
	NSString_mangledIntValue.py
	Don't Try This At Home!
	Protocols
	Getting a Protocol
	Checking Protocol conformance
	Declaring Protocol conformance
	Creating new Protocols
	Selectors
	Inspecting a Selector
	Implementing non-default Selector
	Type@:{Signatures=i@c}?!
	Wrapping Frameworks
	DiscRecording.py
	Poking at DiscRecording
	Plugins
	Where are they used?
	Plugin Guidelines
	setup.py for SillyBallsSaver
	objc.inject
	objc.inject syntax
	Questions?

