Technical Infrastructure Free software projects rely on collaboration technologies: tools that support the selective capture and integration of digitally-expressed human intentions about a shared project. The more skilled you are at using these tools, and at persuading others to use them, the more successful your project will be. This only becomes more true as the project grows. Smart information management is what prevents open source projects from collapsing under the weight of Brooks' Law,From his book The Mythical Man Month, 1975. See https://en.wikipedia.org/wiki/The_Mythical_Man-Month, https://en.wikipedia.org/wiki/Brooks_Law, and https://en.wikipedia.org/wiki/Fred_Brooks. which states that adding more people to a late software project makes it later. Fred Brooks observed that the complexity of communications in a project increases as the square of the number of participants. When only a few people are involved, everyone can easily talk to everyone else, but when hundreds of people are involved, it is no longer possible for each person to remain constantly aware of what everyone else is doing. If good free software project management is about making everyone feel like they're all working together in the same room, the obvious question is: what happens when everyone in a crowded room tries to talk at once? This problem is not new. In real-world crowded rooms, the solution is parliamentary procedure: formal guidelines for how to have real-time discussions in large groups, how to make sure important dissents are not lost in floods of "me-too" comments, how to form subcommittees, how to recognize and record when decisions are made, etc. An important part of parliamentary procedure is specifying how the group interacts with its information management system. Some remarks are made "for the record", others are not. The record itself is subject to direct manipulation, and is understood to be not a literal transcript of what occurred but rather a representation of what the group is willing to agree occurred. The record is not monolithic; it takes different forms for different purposes. It comprises the minutes of individual meetings, the complete collection of all minutes of all meetings, summaries, agendas and their annotations, committee reports, reports from correspondents not present, lists of action items, etc. Because the Internet is not really a room, we can dispense with those parts of parliamentary procedure that keep some people quiet while others are speaking. But when it comes to information management techniques, well-run open source projects are parliamentary procedure on steroids. Since almost all communication in open source projects happens in writing, elaborate systems have evolved for routing and labeling data appropriately, for minimizing repetitions so as to avoid spurious divergences, for storing and retrieving data, for correcting bad or obsolete information, and for associating disparate bits of information with each other as new connections are observed. Active participants in open source projects internalize many of these techniques, and will often perform complex manual tasks to ensure that information is routed correctly. But the whole endeavor ultimately depends on sophisticated software support. As much as possible, the communications media themselves should do the routing, labeling, and recording, and should make the information available to humans in the most convenient way possible. In practice, of course, humans will still need to intervene at many points in the process, and it's important that the software make such interventions convenient too. But in general, if the humans take care to label and route information accurately on its first entry into the system, then the software should be configured to make as much use of that metadata as possible. The advice in this chapter is intensely practical, based on experiences with specific software and usage patterns. But the point is not just to teach a particular collection of techniques. It is also to demonstrate, by means of many small examples, the overall attitude that will best encourage good information management in your project. Promoting this attitude will involve a combination of technical skills and people skills. The technical skills are essential because information management software always requires configuration, plus a certain amount of ongoing maintenance and tweaking as new needs arise (for example, see the discussion of how to handle project growth in ). The people skills are necessary because the human community also requires maintenance: it's not always immediately obvious how to use these tools to full advantage, and in some cases projects have conflicting conventions (for example, see the discussion of setting Reply-to headers on outgoing mailing list posts, in ). Everyone involved with the project will need to be encouraged, at the right times and in the right ways, to do their part to keep the project's information well organized. The more interested the contributor, the more complex and specialized the techniques she will be willing to learn. The right techniques for your project may change over time, as collaboration technology changes and as your project changes. You may finally get everything configured just the way you want it, and have most of the community participating, but then project growth will make some of those practices unscalable. Or project growth may stabilize, and the developer and user communities settle into a comfortable relationship with the technical infrastructure, but then someone will come along and invent a whole new information management service, and pretty soon newcomers will be asking why your project doesn't use it — for example, this happened to a lot of free software projects that predate the invention of the wiki (see https://en.wikipedia.org/wiki/Wiki), and more recently has been happening to projects whose workflows were developed before the rise of GitHub PRs (see ) as the canonical way to package proposed contributions. Many infrastructure questions are matters of judgement, involving tradeoffs between the convenience of those producing information and the convenience of those consuming it, or between the time required to configure information management software and the benefit it brings to the project. Beware of the temptation to over-automate, that is, to automate things that really require human attention. Technical infrastructure is important, but what makes a free software project work is care — and intelligent expression of that care — by the humans involved. The technical infrastructure is really about giving humans easy opportunities to apply care. What a Project Needs Most open source projects offer at least this minimum, standard set of tools for managing information: Web site Primarily a centralized, one-way conduit of information from the project out to the public and to participants. The web site may also serve as a portal leading to other project tools. See . Message forums / Mailing lists Usually the most active communications forum in the project, and the "medium of record." See . Version control Enables developers to manage code changes conveniently, including reverting and "change porting". Enables everyone to watch what's happening to the code. See . Bug tracking Enables developers to keep track of what they're working on, coordinate with each other, and plan releases. Enables everyone to query the status of bugs and record information (e.g., reproduction recipes) about particular bugs. Can be used for tracking not only bugs, but also tasks, releases, new features, etc. See . Real-time chat A place for quick, lightweight discussions and question/answer exchanges. Not always archived completely. See . Each tool in this set addresses a distinct need, but their functions are also interrelated, and the tools must be made to work together. Below we will examine how they can do so, and more importantly, how to get people to use them. You may be able to avoid a lot of the headache of choosing and configuring many of these tools by using a canned hosting site: an online service that offers prepackaged, templatized web services with some or all of the collaboration tools needed to run a free software project. See for a discussion of the advantages and disadvantages of canned hosting. Web Site For our purposes, the web site means web pages devoted to helping people participate in the project as developers, documenters, etc. Note that this may be different from the main user-facing web site. In many projects, users have different needs and often (statistically speaking) a different mentality from the developers. The kinds of web pages most helpful to users are not always the same as those helpful for developers. Don't try to make a "one size fits all" web site just to save some writing and maintenance effort: you'll end up with a site that is not quite right for either audience. The two types of sites should cross-link, of course, and in particular it's important that the user-oriented site have, tucked a way in a corner somewhere, a clear link to the developers' site, since most new developers will start out at the user-facing pages and look for a path from there to the developers' area. An example may make this clearer. As of this writing in February 2022, the office suite LibreOffice has its main user-oriented web site at https://www.libreoffice.org/, as you'd expect. If you were a user wanting to download and install LibreOffice, you'd start there, go straight to the "Download" link, and so on. But if you were a developer looking to fix a bug in LibreOffice, you might start at https://www.libreoffice.org/, but you'd be looking for a link that says something like "Developers", or "Development", or "Get Involved" — in other words, you'd be looking for the gateway to the development area. LibreOffice, like other large projects, has a few different gateways to developer-land. There's a prominent link partway down the page that says "Get Involved", and at the top there's also a dropdown menu named "Improve It" that offers a number of paths to participation, including a "Developers" item. The "Get Involved" page is aimed at the broadest possible range of potential contributors: developers, yes, but also documenters, quality-assurance testers, marketing helpers, web infrastructure experts, financial or in-kind donors, interface designers, support forum helpers, etc. This frees up the "Developers" page to target the rather narrower audience of programmers interested in improving the LibreOffice code. The set of links and short descriptions provided on both pages is admirably clear and concise: you can tell immediately from looking whether you're in the right place for what you want do, and if so what the next thing to click on is. The "Development" page gives some information about where to find the code, how to contact the other developers, how to file bugs, and things like that, but most importantly it points to what most seasoned open source contributors would instantly recognize as the real gateway to actively-maintained development information: the development wiki at https://wiki.documentfoundation.org/Development. This division into two contributor-facing gateways, one for all kinds of contributions and another for coders specifically, is probably right for a large, multi-faceted project like LibreOffice. You'll have to use your judgement as to whether that kind of subdivision is appropriate for your project; at least at the beginning, it probably isn't. It's better to start with one unified contributor gateway, aimed at all the types of contributors you expect, and if that page ever gets large enough or complex enough to feel unwieldy — listen carefully for complaints about it, since you and other long-time participants will be naturally desensitized to weaknesses in introductory pages! — then you can divide it up however seems best. From a technical point of view there is not much to say about setting up the project web site. Web hosting is easy to come by, and most of the important things to say about layout and arrangement were covered in the previous chapter. The web site's main function is to present a clear and welcoming overview of the project, and to bind together the various collaboration tools (the version control system, bug tracker, etc). To save time and effort, many projects just use one of the canned hosting services, as described below. Canned Hosting A canned hosting site is an online service that offers some or all of the online collaboration tools needed to run a free software project. At a minimum, a canned hosting site offers public version control repositories and bug tracking; most also offer wiki space, many offer mailing list hostingNote that even when a canned hosting site doesn't offer message forums as a standalone feature, it will usually offer rich notification and subscription/watch features attached to its bug tracker and version control system, such that participants can effectively have a message-forum-style discussion centered around a particular bug or change. While these features are very useful, they are not a full substitute for first-class message forums as described in . too, and some offer continuous integration testingSee automated-testing. and other servicesNote that for successful free software projects, interested commercial entities will eventually often step up to fund many of these services anyway; see for further discussion of this.. For many projects, canned hosting provides a perfectly adequate developer-oriented entry point to the project, and there is no need to set up a separate web site. There are two main advantages to using a canned site. The first is server maintenance: uptime monitoring, operating system upgrades, etc. Having someone else handle that is one less thing to worry about. The second advantage is simplicity. They have already chosen a bug tracker, a version control system, perhaps discussion forum software, and everything else you need to run a project. They've configured the tools, arranged single-sign-on authentication where appropriate, are taking care of backups for all the data stored in the tools, etc. You don't need to make many decisions. All you have to do is fill in a registration form, press a button, and suddenly you've got a project development web site. These are pretty significant benefits. The disadvantage, of course, is that you must accept their choices and configurations, even if something different would be better for your project. Usually canned sites are adjustable within certain narrow parameters, but you will never get the fine-grained control you would have if you set up the site yourself and had full administrative access to the server. A perfect example of this is the handling of generated files. Certain project web pages may be generated files — for example, there are systems for keeping FAQ data in an easy-to-edit master format, from which HTML, PDF, and other presentation formats can be generated. As explained in , you wouldn't want to version the generated formats, only the master file. But when your web site is hosted on someone else's server, it may be difficult to set up a custom hook to regenerate the online HTML version of the FAQ whenever the master file is changed. If you choose a canned site, try to leave open the option of switching to a different site later, by using a custom domain name as the project's development home address. You can forward that URL to the canned site, or have a fully customized development home page at the main URL and link to the canned site for specific functionality. Just try to arrange things such that if you later decide to use a different hosting solution, the project's main address doesn't need to change. If you're not sure whether to use canned hosting, then you should probably use canned hosting. These sites have integrated their services in myriad ways (just one example: if a commit mentions a bug ticket number using a certain format, then people browsing that commit later will find that it automatically links to that ticket), ways that would be laborious for you to reproduce, especially if it's your first time running an open source project. The universe of possible configurations of collaboration tools is vast and complex, but the same set of choices has faced everyone running an open source project and there are some settled solutions now. Each of the canned hosting sites implements a reasonable subset of that solution space, and unless you have reason to believe you can do better, your project will probably run best by just using one of those sites. Choosing a Canned Hosting Site There are now so many sites providing free-of-charge canned hosting for projects released under open source licenses that there is not space here to review the field. So I'll make this easy: If you don't know what to choose, then choose GitHub (https://github.com/). It's by far the most popular and appears set to stay that way for some years to come. It has a good set of features and integrations. Many developers are already familiar with GitHub and have an account there. It offers APIs at https://develop.github.com/ for interacting programmatically with project resources, and starting in 2020 it introduced message forums.That is, message forums as in . The feature's name is "GitHub Discussions"; you have to turn it on for your repository, as it's not currently on by default. If you're not convinced by GitHub (for example because your project uses, say, Mercurial instead of Git for version control), but you aren't sure where to host, take a look at Wikipedia's thorough comparison at https://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities; it's the first place to look for up-to-date, comprehensive information on open source project hosting options. Hosting on Fully Open Source Infrastructure Although all the canned hosting sites use plenty of free software in their stack, most of them also wrote some proprietary code to glue it all together. In these cases the hosting environment itself is not fully open source, and thus cannot be easily reproduced by others. For example, while Git itself is free software, GitHub is a hosted service running partly with proprietary software — if you leave GitHub, you can't take a copy of their infrastructure with you, at least not all of it. Some projects would prefer a canned hosting site that runs an entirely free software infrastructure. This might be to preserve and signal their commitment to software freedom, and in some cases might also be due to immediate utilitarian considerations — for example, politically sensitive projects that are worried about being deplatformed want to know that they can reproduce their project's hosting independently should it ever become necessary. Fortunately, there are places to obtain fully free-software commercial hosting. I will list a few examples below (as of early 2020), albeit with no pretense of completeness. GitLab (https://gitlab.com/) GitLab offers an excellent collaboration platform that comes in two versions: fully free-software (they call this their "Community Edition") and proprietary (which they call their "Enterprise Edition".See for why this terminology deserves scare quotes. The proprietary edition is hosted by GitLab.com, and has a few features the open source edition doesn't have. Interestingly, GitLab.com themselves don't offer hosting of the strictly open source edition, but some other companies do. Two of them are GitLabHost BV (https://www.gitlabhost.com/) and 2nd Watch (https://www.2ndwatch.com/); you can probably find others by searching https://partners.gitlab.com/. (It's also pretty easy to set up your own instance of GitLab. My own company did so at https://code.librehq.com/ and it was fairly simple, although we have to perform security upgrades frequently. This does not mean that GitLab is disproportionately likely to have security problems; it just means that GitLab is very popular and therefore a lot of people are available to detect and report problems.) Sourcehut (https://sourcehut.org/ and https://sr.ht/) Sourcehut offers project hosting with both Git and Mercurial available as version control systems. It is designed to be light, fast, and developer-focused: there is no tracking nor advertising, all of its features work without in-browser Javascript, and many of its features work without even requiring a user account (e.g., some email-driven interactions with the bug tracker). As of late 2023, it's officially still in "public alpha", but it is stable and is fine for projects that need reliable hosting. Codeberg (https://codeberg.org/) Codeberg offers zero-cost project hosting for free and open source projects. It's run by a non-profit organization in Germany that supports free (libre) culture, is featureful, and is under active development as of late 2023. Codeberg's underlying platform is Forgejo (codeberg.org/forgejo/forgejo), which is itself a community fork made in reaction to an unexpected corporate move in another free software project (see forgejo.org/2022-12-15-hello-forgejo for details). Should you host your project on fully open source infrastructure? I can't answer that question for you, since it ultimately depends on you and your project's philosophical positions. However, as a practical matter, I cannot say I've seen any evidence that the degree of software-freedom of the hosting platform has much effect on a project's success. The vast majority of developers who work on free software projects seem to be willing to participate through a non-free hosting platform when that's what the project is using. Whether the hosting platform is itself free software or not, it is crucial to be able to interact with project data in automatable ways, and to have a way to export data out of the hosting platform. A site that meets these criteria can never truly lock you in, and will even be somewhat extensible, via its programmatic interface. Of course, all the above applies only to the servers of the hosting site. Your project itself should never require participants to run proprietary software on their own machines.The exception to this is proprietary Javascript code that is received from the hosting site and run confined or "sandboxed" in one tab in the user's browser. The question of whether such code is conceptually an extension of the server, or should be thought of as running on the client machine even though in some senses it has more access to server resources than it does to client resources, is a deep and ongoing debate. We won't settle it here, but the issue is at least more complex than just which CPU is executing the instructions. Anonymity and Involvement A problem that is not strictly limited to the canned sites, but is most often found there, is the over-requirement of user registration to participate in various aspects of the project. The proper degree of requirement is a bit of a judgement call. User registration helps prevent spam, for one thing, and even if every commit gets reviewed you still probably don't want anonymousPseudonymous is another matter. As long as a consistent identity has accrued reputation, you may not need to know who it actually is. strangers pushing changes into your repository, for example. But sometimes user registration ends up being required for tasks that ought to be permitted to unregistered visitors, especially the ability to file tickets in the bug tracker, and to comment on existing tickets. By requiring a logged-in username for such actions, the project raises the involvement bar for what should be quick, convenient tasks. It also changes the demographics of who files bugs, since those who take the trouble to set up a user account at the project site are hardly a random sample even from among users who are willing to file bugs (who in turn are already a biased subset of all the project's users). Of course, one wants to be able to contact someone who's entered data into the ticket tracker, but having a field where she can enter her email address (if she wants to) would be sufficient for that. If a new user spots a bug and wants to report it, she'll only be annoyed at having to fill out an account creation form before she can enter the bug into the tracker. She may simply decide not to file the bug at all. If you have control over which actions can be done anonymously, make sure that at least all read-only actions are permitted to non-logged-in visitors, and if possible that data entry portals, such as the bug tracker, that tend to bring information from users to developers, can also be used anonymously, although of course anti-spam techniques, such as captchas, may still be necessary. Message Forums / Mailing Lists Not all projects need to use discussion forum software. For relatively small, focused projects that are organized around a single code repository, the email gateway features of the bug tracker (as discussed in later in this chapter) may be enough to sustain most conversations. When a non-technical topic needs to be discussed, someone can just create an issue ticket — a fake bug report, essentially — for the topic and conduct the discussion there. So if you think your project will get along fine without forums, you can skip this section and just try that. It will be obvious pretty quickly if you do need them. Larger and more complex projects, however, will almost always benefit from having dedicated discussion forums. This is partly because there will be many conversations that are not attached to a specific bug, and partly because the larger the project, the more important it is to keep the bug tracker focused on actual bugs and have a separate place for other kinds of discussions. For a long time, discussion forums were mainly mailing lists, but the distinction between mailing lists and Web-based forums is, thankfully, slowly disappearing. Services like Google Groups (https://groups.google.com/), which is not itself open source, and Discourse (http://www.discourse.org/), which is, have established that cross-accessibility of message forums as mailing lists and vice versa is the minimum bar to meet, and modern discussion management systems reflect this. Because of this nearly-completed unification between email lists and web-based forumsWhich was a long time coming — see http://www.rants.org/2008/03/06/thread_theory/ for more. And no, I'm not too dignified to refer to my own blog post., I will use the terms message forum and mailing list more or less interchangeably. They refer to any kind of message-based forum where posts are linked together in threads (topics), people can subscribe, archives of past messages can be browsed, and the forum can be interacted with via email or via a web browser. If a user is exposed to any channel besides a project's web pages, it is most likely to be one of the project's message forums. But before she experiences the forum itself, she will experience the process of finding the right forum. Your project should have a prominently-placed description of all the available public forums, to give newcomers guidance in deciding which ones to browse or post to first. A typical such description might say something like this:
The mailing lists are the main day-to-day communication channels for the Scanley community. You don't have to be subscribed to post to a list, but if it's your first time posting (whether you're subscribed or not), your message may be held in a moderation queue until a human moderator has a chance to confirm that the message is not spam. We're sorry for this delay; blame the spammers who make it necessary. Scanley has the following lists: users {_AT_} scanley.org: Discussion about using Scanley or programming with the Scanley API, suggestions of possible improvements, etc. You can browse the users@ archives at <<<link to archive>>> or subscribe here: <<<link to subscribe>>>. dev {_AT_} scanley.org: Discussion about developing Scanley. Maintainers and contributors are subscribed to this list. You can browse the dev@ archives at <<<link to archive>>> or subscribe here: <<<link to subscribe>>>. (Sometimes threads cross over between users@ and dev@, and Scanley's developers will often participate in discussions on both lists. In general if you're unsure where a question or post should go, start it out on users@. If it should be a development discussion, someone will suggest moving it over to dev@.) announcements {_AT_} scanley.org: This is a low-traffic, subscribe-only list. The Scanley developers post announcements of new releases and occasional other news items of interest to the entire Scanley community here, but followup discussion takes place on users@ or dev@. <<<link to subscribe>>>. notifications {_AT_} scanley.org: All code commit messages, bug tracker tickets, automated build/integration failures, etc, are sent to this list. Most developers should subscribe: <<<link to subscribe>>>. There is also a non-public list you may need to send to, although only developers are subscribed: security {_AT_} scanley.org: Where the Scanley project receives confidential reports of security vulnerabilities. Of course, the report will be made public eventually, but only after a fix is released; see our security procedures page for more [...]
Choosing the Right Forum Management Software It's worth investing some time in choosing the right mailing list management system for your project. Modern list management tools (some of which are listed later in ) offer at least the following features: Both email- and web-based access Users should be able to subscribe to the forums by email, and read them on the web (where they are organized into conversations or "threads", just as they would be in a mailreader). Moderation features To "moderate" is to check posts, especially first-time posts, to make sure they are not spam before they go out to the entire list. Moderation necessarily involves human administrators, but software can do a great deal to make it easier on the moderators. There is more said about moderation in later in this chapter. Rich administrative interface There are many things administrators need to do besides spam moderation — for example, removing obsolete addresses, a task that can become urgent when a recipient's address starts sending "I am no longer at this address" bounces back to the list in response to every list post (though some systems can even detect this and unsubscribe the person automatically). If your forum software doesn't have decent administrative capabilities, you will quickly realize it, and should consider switching to software that does. Header manipulation Some people have sophisticated filtering and replying rules set up in their mail readers, and rely on the forum adding or manipulating certain standard headers. See later in this chapter for more on this. Archiving All posts to the managed lists are stored and made available on the web (see for more on the importance of public archives). Usually the archiver is a native part of the message forum system; occasionally, it is a separate tool that needs to be integrated. The point of the above list is really just to show that forum management is a complex problem that has already been given a lot of thought, and to some degree been solved. You don't need to become an expert, but you will have to learn at least a little bit about it, and you should expect list management to occupy your attention from time to time in the course of running any free software project. Below we'll examine a few of the most common issues. Spam Prevention A mailing list that takes no spam prevention measures at all will quickly be submerged in junk emails, to the point of unusability. Spam prevention is mandatory. It is really two distinct functions: preventing spam posts from appearing on your mailing lists, and preventing your mailing list from being a source of new email addresses for spammers' harvesters. Filtering posts There are three basic techniques for preventing spam posts, and most mailing list software offers all three. They are best used in tandem: Only auto-allow postings from list subscribers. This is effective as far as it goes, and also involves very little administrative overhead, since it's usually just a matter of changing a setting in the mailing list software's configuration. But note that posts which aren't automatically approved must not be simply discarded. Instead, they should go into a moderation queue, for two reasons. First, you want to allow non-subscribers to post: a person with a question or suggestion should not need to subscribe to a mailing list just to ask a question there. Second, even subscribers may sometimes post from an address other than the one by which they're subscribed. Email addresses are not a reliable method of identifying people, and shouldn't be treated as such. Filter posts through spam-detection software. If the mailing list software makes it possible (most do), you can have posts filtered by spam-filtering software. Automatic spam-filtering is not perfect, and never will be, since there is a never-ending arms race between spammers and filter writers. However, it can greatly reduce the amount of spam that makes it through to the moderation queue. Since the longer that queue is the more time humans must spend examining it, any amount of automated filtering is beneficial. There is not space here for detailed instructions on setting up spam filters. You will have to consult your mailing list software's documentation for that (see ). List software often comes with some built-in spam prevention features, but you may want to add some third-party filters. I've had good experiences with SpamAssassin (https://spamassassin.apache.org/). That is not a comment on the many other open source spam filters out there, some of which are apparently also quite good; I just happen to have used SpamAssassin myself and been satisfied with it. Moderation. For mails that aren't automatically allowed by virtue of being from a list subscriber, and which make it through the spam filtering software, if any, the last stage is moderation: the mail is routed to a special holding area, where a human examines it and confirms or rejects it. Confirming a post usually takes one of two forms: you can accept the sender's post just this once, or you can tell the system to allow this and all future posts from the same sender. You almost always want to do the latter, in order to reduce the future moderation burden — after all, someone who has made a valid post to a forum is unlikely to suddenly turn into a spammer later. Rejecting is done by either marking the item to be discarded, or by explicitly telling the system the message was spam so the system can improve its ability to recognize future spams. Sometimes you also have the option to automatically discard future mails from the same sender without them ever being held in the moderation queue, but there is rarely any point doing this, since spammers don't send from the same address twice anyway. Oddly, most message-forum systems have not yet given the moderation queue administrative interface the attention it deserves, considering how common the task is, so moderation often still requires more clicks and UI gestures than it should. I hope this situation will improve in the future. In the meantime, perhaps knowing you're not alone in your frustration will temper your disappointment somewhat. Use the Moderation Channel Only for Moderation Be sure to use moderation only for filtering out spams, and perhaps for clearly off-topic messages such as when someone accidentally posts to the wrong mailing list. Although the moderation system may give you a way to respond directly to the sender, you should never use that method to answer questions that really belong on the mailing list itself, even if you know the answer off the top of your head. To do so would deprive the project's community of an accurate picture of what sorts of questions people are asking, and deprive people of a chance to answer questions themselves and/or see answers from others. (This is really just a special case of the advice in .) Mailing list moderation is strictly about keeping the list free of spam and of wildly off-topic or otherwise inappropriate emails, nothing more. Identification and Header Management When interacting with the forum by email, subscribers often want to filter mails from the list into custom inboxes. Their mail reading software can do this automatically by examining the mail's headers. The headers are the fields at the top of the mail that indicate the sender, recipient, subject, date, and various other things about the message. Certain headers are well known and are effectively mandatory: From: ... To: ... Subject: ... Date: ... Others are optional, though still quite standard. For example, emails are not strictly required to have the Reply-to: sender@email.address.here header, but most do, because it gives recipients a foolproof way to reach the author (it is especially useful when the author had to send from an address other than the one to which replies should be directed). Some mail reading software offers an easy-to-use interface for filing mails based on patterns in the Subject header. This leads people to request that the mailing list add an automatic prefix to all Subjects, so they can set their readers to look for that prefix and automatically file the mails in the right folder. The idea is that the original author would write: Subject: Making the 2.5 release. but the mail would show up on the list looking like this: Subject: [Scanley Discuss] Making the 2.5 release. Although most list management software offers the option to do this, you may decide against turning the option on. The problem it solves can often be solved in less obtrusive ways (see below), and there is a cost to eating space in the Subject field. Experienced mailing list users typically scan the Subjects of the day's incoming list mail to decide what to read and/or respond to. Prepending the list's name to the Subject can push the right side of the Subject off the screen, rendering it invisible. This obscures information that people depend on to decide what mails to open, thus reducing the overall functionality of the mailing list for everyone. Instead of munging the Subject header, people could take advantage of the other standard headers, starting with the To header, which should say the mailing list's address: To: <discuss@lists.example.org> Any mail reader that can filter on Subject should be able to filter on To just as easily. There are a few other optional-but-standard headers expected for mailing lists; they are sometimes not displayed by most mailreader software, but they are present nonetheless. Filtering on them is even more reliable than using the "To" or "Cc" headers, and since these headers are added to each post by the mailing list management software itself, some users may be counting on their presence: List-Help: <mailto:discuss-help@lists.example.org> List-Unsubscribe: <mailto:discuss-unsubscribe@lists.example.org> List-Post: <mailto:discuss@lists.example.org> List-Id: <discuss.lists.example.org> Delivered-To: mailing list discuss@lists.example.org Mailing-List: contact discuss-help@lists.example.org; run by ezmlm For the most part, they are self-explanatory. See http://www.nisto.com/listspec/list-manager-intro.html for more explanation, or if you need the really detailed, formal specification, see http://www.faqs.org/rfcs/rfc2369.html. Having said all that, these days I find that most subscribers just request that the Subject header include a list-identifying prefix. That's increasingly how people are accustomed to filtering email: Subject-based filtering is what many of the major online email services (like Gmail) offer users by default, and those services tend not to make it easy to see the presence of less-commonly used headers like the ones I mentioned above — thus making it less likely that people would even realize that they even have the option of filtering on those other headers. Therefore, reluctantly, I recommend using a Subject prefix (keep it as short as you can) when that's what your community wants. But if your project highly technical and most of its participants are comfortable filtering on other headers, then do that and leave the Subject line undisturbed. Some mailing list software offers an option to append unsubscription instructions to the bottom of every post. If that option is available, turn it on. It causes only a couple of extra lines per message, in a harmless location, and it can save you a lot of time, by cutting down on the number of people who mail you — or worse, mail the list! — asking how to unsubscribe. The Great Reply-to Debate Earlier, in , I stressed the importance of making sure discussions stay in public forums, and talked about how active measures are sometimes needed to prevent conversations from trailing off into private email threads; furthermore, this chapter is all about setting up project communications software to do as much of the work for people as possible. Therefore, if the mailing list management software offers a way to automatically cause discussions to stay on the list, you would think turning on that feature would be the obvious choice. Well, not quite. There is such a feature, but it has some pretty severe disadvantages. The question of whether or not to use it is one of the hottest debates in mailing list management — admittedly, not a controversy that's likely to make the evening news in your city, but it can flare up from time to time in free software projects. Below, I will describe the feature, give the major arguments on both sides, and make the best recommendation I can. The feature itself is very simple: the mailing list software can, if you wish, automatically set the Reply-to header on every post to redirect replies to the mailing list. That is, no matter what the original sender puts in the Reply-to header (or even if they don't include one at all), by the time the list subscribers see the post, the header will contain the list address: Reply-to: discuss@lists.example.org On its face, this seems like a good thing. Because virtually all mail reading software pays attention to the Reply-to header, now when anyone responds to a post, their response will be automatically addressed to the entire list, not just to the sender of the message being responded to. Of course, the responder can still manually change where the message goes, but the important thing is that by default replies are directed to the list. It's a perfect example of using technology to encourage collaboration. Unfortunately, there are some disadvantages. The first is known as the Can't Find My Way Back Home problem: sometimes the original sender will put their "real" email address in the Reply-to field, because for one reason or another they send email from a different address than where they receive it. People who always read and send from the same location don't have this problem, and may be surprised that it even exists. But for those who have unusual email configurations, or who cannot control how the From address on their mails looks (perhaps because they send from work and do not have any influence over the IT department), using Reply-to may be the only way they have to ensure that responses reach them. When such a person posts to a mailing list that she's not subscribed to, her setting of Reply-to becomes essential information. If the list software overwrites it,In theory, the list software could add the list's address to whatever Reply-to destination were already present, if any, instead of overwriting. In practice, for reasons I don't know, most list software overwrites instead of appending. she may never see the responses to her post. The second disadvantage has to do with expectations, and in my opinion is the most powerful argument against Reply-to munging. Most experienced mail users are accustomed to two basic methods of replying: reply-to-all and reply-to-author. All modern mail reading software has separate keys for these two actions. Users know that to reply to everyone (that is, including the list), they should choose reply-to-all, and to reply privately to the author, they should choose reply-to-author. Although you want to encourage people to reply to the list whenever possible, there are certainly circumstances where a private reply is the responder's prerogative — for example, they may want to say something confidential to the author of the original message, something that would be inappropriate on the public list. Now consider what happens when the list has overridden the original sender's Reply-to. The responder hits the reply-to-author key, expecting to send a private message back to the original author. Because that's the expected behavior, he may not bother to look carefully at the recipient address in the new message. He composes his private, confidential message, one which perhaps says embarrassing things about someone on the list, and hits the send key. Unexpectedly, a few minutes later his message appears on the mailing list! True, in theory he should have looked carefully at the recipient field, and should not have assumed anything about the Reply-to header. But authors almost always set Reply-to to their own personal address (or rather, their mail software sets it for them), and many longtime email users have come to expect that. In fact, when a person deliberately sets Reply-to to some other address, such as the list, she usually makes a point of mentioning this in the body of her message, so people won't be surprised at what happens when they reply. Because of the possibly severe consequences of this unexpected behavior, my own preference is to configure list management software to never touch the Reply-to header. This is one instance where using technology to encourage collaboration has, it seems to me, potentially dangerous side-effects. However, there are also some powerful arguments on the other side of this debate. Whichever way you choose, you will occasionally get people posting to your list asking why you didn't choose the other way. Since this is not something you ever want as the main topic of discussion on your list, it might be good to have a canned response ready, of the sort that's more likely to stop discussion than encourage it. Make sure you do not insist that your decision, whichever it is, is obviously the only right and sensible one (even if you think that's the case). Instead, point out that this is a very old debate, there are good arguments on both sides, no choice is going to satisfy all users, and therefore you just made the best decision you could. Politely ask that the subject not be revisited unless someone has something genuinely new to say, then stay out of the thread and hope it dies a natural death. (See also .) Someone may suggest a vote to choose one way or the other. You can do that if you want, but I personally do not feel that counting heads is a satisfactory solution in this case. The penalty for someone who is surprised by the behavior is so huge (accidentally sending a private mail to a public list), and the inconvenience for everyone else is fairly slight (occasionally having to remind someone to respond to the whole list instead of just to you), that it's not clear that a majority should be able to put a minority at such risk. I have not addressed all aspects of this issue here, just the ones that seemed most important. For a full discussion, see these two canonical documents, which are the ones people always cite when they're having this debate: Leave Reply-to alone, by Chip Rosenthal https://unicom.crosenthal.com/pw/reply-to-harmful.html Set Reply-to to list, by Simon Hill https://web.archive.org/web/20090223102606/http://www.metasystema.net/essays/reply-to.mhtml Despite the mild preference indicated above, I do not feel there is a "right" answer to this question,Although there is, of course, a right answer, and it is to leave the original author's Reply-to untouched. The relevant standards document, http://www.ietf.org/rfc/rfc2822.txt, says "When the 'Reply-To:' field is present, it indicates the mailbox(es) to which the author of the message suggests that replies be sent." and happily participate in many lists that do set Reply-to. The most important thing you can do is settle on one way or the other early, and try not to get entangled in debates about it after that. When the debate re-arises every few years, as it inevitably will, you can point people to the archived discussion from last time. Two Fantasies Someday, someone will get the bright idea to implement a reply-to-list key in a mail reader. It would use some of the custom list headers mentioned earlier to figure out the address of the mailing list, and then address the reply directly to the list only, leaving off any other recipient addresses, since most are probably subscribed to the list anyway. Eventually, other mail readers will pick up the feature, and this whole debate will go away. (Actually, the Mutt (http://www.mutt.org/) mail reader does offer this feature. Then shortly after the first edition of this book appeared, Michael Bernstein wrote me to say: "There are other email clients that implement a reply-to-list function besides Mutt. For example, Evolution has this function as a keyboard shortcut, but not a button (Ctrl+L).") An even better solution would be for Reply-to munging to be a per-subscriber preference in the list management software. Those who want the list to set Reply-to munged — either on posts they receive or posts they send — could ask for that, and those who don't would ask for Reply-to to be left alone. However, I don't know of any currently-maintained software that offers this on a per-subscriber basis. Archiving Every discussion forum should be fully archived. It's common for new discussions to refer to old ones, and often people doing an Internet search will find a solution to a problem by stumbling across a message that had been casually posted to a mailing list by some stranger. Archives also provide history and context for new users and developers who are becoming more involved in the project. The technical details of setting up archiving are specific to the software that's running the forum, and are beyond the scope of this book. If you need to choose or configure an archiver, consider these properties: Prompt updating People will often want to refer to an archived message that was posted recently. If possible, the archiver should archive each post instantaneously, so that by the time a post appears on the mailing list, it's already present in the archives. If that option isn't available, then at least try to set the archiver to update itself every hour or so. (By default, some archivers run their update processes once per night, but in practice that's far too much lag time for an active mailing list.) Referential stability Once a message is archived at a particular URL, it should remain accessible at that exact same URL forever. Even if the archives are rebuilt, restored from backup, or otherwise fixed, any URLs that have already been made publicly available should remain the same. Stable references make it possible for Internet search engines to index the archives, which is a major boon to users looking for answers. Stable references are also important because mailing list posts and threads are often linked to from other places, such as from the bug tracker (see ) or from other project documents. Ideally, mailing list software would include a message's archive URL, or at least the message-specific portion of the URL, in a header or footer when it distributes the message to recipients. That way people who have a copy of the message would be able to instantly know its archive location without having to actually visit the archives, which would be helpful because any operation that involves web browsing is automatically time-consuming. Whether any mailing list software actually offers this feature, I don't know; unfortunately, the ones I have used do not. However, it's something to look for (or, if you write mailing list software, it's a feature to consider implementing, please). Thread support It should be possible to go from any individual message to the thread (group of related messages) that the original message is part of. Each thread should have its own URL too, separate from the URLs of the individual messages in the thread. Searchability An archiver that doesn't support searching — on the bodies of messages, as well as on authors and subjects — is close to useless. Note that some archivers support searching by simply farming the work out to an external search engine such as Google. This is acceptable, but direct search support is usually more fine-tuned, because it allows the searcher to specify that the match must appear in a subject line versus the body, for example. The above is just a technical checklist to help you evaluate and set up an archiver. Getting people to actually use the archiver to the project's advantage is discussed in later chapters, in particular . Mailing List / Message Forum Software Here are some tools for running message forums. If the site where you're hosting your project already has a default setup, then you can just use that and avoid having to choose. But if you need to install one yourself, below are some possibilities. (Of course, there are probably other tools out there that I just didn't happen to find, so don't take this as a complete list). Discourse — https://discourse.org/ Discourse was built to be the One True Discussion System for Web and mobile, and so far it seems to be living up to its promise. It is open source, supports both browser-based and email-based participation in discussions, and is under active development with commercial support available. You can purchase hosted discourse if you don't want to set up yourself. Sympa — https://www.sympa.org/ Sympa is developed and maintained by a consortium of French universities. It is designed for a given instance to handle both very large lists (> 1,000,000 members) and a large number of lists. Sympa can work with a variety of dependencies; for example, you can run it with sendmail, postfix, qmail or exim as the underlying message transfer agent. It has built-in Web-based archiving. Mailman — http://www.list.org/ For many years, Mailman was the standard for open source project mailing lists. It comes with a built-in archiver and has hooks for plugging in external archivers. Mailman is very reliable in terms of message delivery and other under-the-hood functionality, but its reputation suffered for a while because of various user interface issues in its aging 2.x code base (especially for spam moderation and subscription moderation), and delays in shipping its long-awaited 3.0 release. However, Mailman 3.0 has now shipped, and is worth a look. It should solve many of the problems of Mailman 2, and may make Mailman a reasonable choice again. This excellent article by Sumana Harihareswara describes the major improvements: https://lwn.net/Articles/638090/. Google Groups — https://groups.google.com/ Listing Google Groups here was a tough call. The service is not itself open source, and a few of its administrative functions can be a bit hard to use. However, its advantages are substantial: your group's archives are always online and searchable; you don't have to worry about scalability, backups, or other run-time infrastructure issues; the moderation and spam-prevention features are pretty good (with the latter constantly being improved, which is important in the neverending spam arms race); and Google Groups are easily accessible via both email and web, in ways that are likely to be already familiar to many participants. These are strong advantages. If you just want to get your project started, and don't want to spend too much time thinking about what message forum software or service to use, Google Groups is a good default choice.
Version Control A version control system (or revision control system) is a combination of technologies and practices for tracking and controlling changes to a project's files, in particular to source code, documentation, and web pages. If you have never used version control before, the first thing you should do is go find someone who has, and get them to join your project. These days, everyone will expect at least your project's source code to be under version control, and probably will not take the project seriously if it doesn't use version control with at least minimal competence. The reason version control is so universal is that it helps with virtually every aspect of running a project: inter-developer communications, release management, bug management, code stability and experimental development efforts, and attribution and authorization of changes by particular developers. The version control system provides a central coordinating force across all of these areas. The core of version control is change management: identifying each discrete change made to the project's files, annotating each change with metadata like the change's date and author, and then replaying these facts to whoever asks, in whatever way they ask. It is a communications mechanism where a change is the basic unit of information. This section does not discuss all aspects of using a version control system. It's so all-encompassing that it must be addressed topically throughout the book. Here, we will concentrate on choosing and setting up a version control system in a way that will foster cooperative development down the road. Version Control Vocabulary This book cannot teach you how to use version control if you've never used it before, but it would be impossible to discuss the subject without a few key terms. These terms are useful independently of any particular version control system: they are the basic nouns and verbs of networked collaboration, and will be used generically throughout the rest of this book. Even if there were no version control systems in the world, the problem of change management would remain, and these words give us a language for talking about that problem concisely. If you're comfortably experienced with version control already, you can probably skip this section. If you're not sure, then read through this section at least once. Certain version control terms have gradually changed in meaning since the early 2000s, and you may occasionally find people using them in incompatible ways in the same conversation. Being able to detect that phenomenon early in a discussion can often be helpful. commit To make a change to the project. More formally: to store a change in the version control database in such a way that it can be incorporated into future releases of the project. "Commit" can be used as a verb or a noun. For example: "I just committed a fix for the server crash bug people have been reporting on Mac OS X. Jay, could you please review the commit and check that I'm not misusing the allocator there?" push To publish a commit to a publicly online repository, from which others can incorporate it into their copy of the project's code. When one says one has pushed a commit, the destination repository is usually implied. Usually it is the project's authoritative repository, the one from which public releases are made. Note that in some older version control systems (e.g., Subversion), commits are automatically and unavoidably pushed up to a predetermined central repository, while in most newer systems (e.g., Git, Mercurial) the developer chooses when and where to push commits. Because the former privileges a particular central repository, they are known as "centralized" version control systems, while the latter are known as "decentralized". In general, decentralized systems are the modern trend,Decentralized version control has actually been around for a long time, but only relatively recently did it become the most popular form of version control. It is now the assumed default, especially for open source — in both senses: that is, the version control systems are themselves open source, and are intended to be suitable for managing open source software projects. especially for open source projects, which benefit from the peer-to-peer relationship between developers' repositories. pull (or "update" or sometimes "fetch") To pull others' changes (commits) into your copy of the project. When pulling changes from a project's mainline development branch (see ), people often say "update" instead of "pull", for example: "Hey, I noticed the indexing code is always dropping the last byte. Is this a new bug?" "Yes, but it was fixed last week — try updating and it should go away." Note that in Git, "pull" and "fetch" are somewhat different. To fetch means to obtain the latest changes from a remote repository (e.g., from the authoritative upstream repository) and store them at the ready in your local repository, but without merging them locally — in essence, it means "synchronize my local copy of the remote repository with the remote repository". To pull means to fetch and then automatically merge the received changes locally (setting conflict markers if there are conflicts). Opinions differ on whether it is better to fetch and then manually merge, or to just pull every time; it depends both on your personal development style and on how the project as a whole manages changes. Despite this difference, even in Git-based projects developers may colloquially say "fetch" to refer to obtaining changes, without meaning fetch specifically as opposed to pull. See also . commit message or log message A bit of commentary attached to each commit, describing the nature and purpose of the commit (both terms are used about equally often; I'll use them interchangeably in this book). Log messages are among the most important documents in any project: they are the bridge between the detailed, highly technical meaning of each individual code changes and the more user-visible world of bugfixes, features and project progress. Later in this section, we'll look at ways to distribute them to the appropriate audiences; also, discusses ways to encourage contributors to write concise and useful commit messages. repository A database in which changes are stored and from which they are published. In centralized version control systems, there is a single, authoritative repository on a remote server; that repository records all changes to the project, and each developer works with a snapshot of the latest version on her own machine. In decentralized systems, each developer has her own repository, changes can be swapped back and forth between repositories arbitrarily, and the question of which repository is authoritative (that is, the one from which public releases are rolled) is defined purely by social convention, instead of by a combination of social convention and technical enforcement. clone (see also "checkout") To obtain one's own development repository by making a copy of the project's central repository. checkout When used in discussion, "checkout" usually means something like "clone", except that centralized systems don't really clone the full repository, they just obtain a working copy. When decentralized systems use the word "checkout", they also mean the process of obtaining working files from a repository, but since the repository is local in that case, the user experience is quite different because the network is not involved. In the centralized sense, a checkout produces a directory tree called a "working copy" (see below), from which changes may be sent back to the original repository. working copy or working files A developer's private directory tree containing the project's source code files, and possibly its web pages or other documents, in a form that allows the developer to edit them. A working copy also contains some version control metadata saying what repository it comes from, what branch it represents, and a few other things. Typically, each developer has her own working copy, from which she edits, tests, commits, pulls, pushes, etc. In decentralized systems, working copies and repositories are usually colocated anyway, so the term "working copy" is less often used. Developers instead tend to say "my clone" or "my copy" or sometimes "my fork". revision, change, changeset, or (again) commit A "revision" is a precisely specified incarnation of the project at a point in time, or of a particular file or directory in the project at that time. These days, most systems also use "revision", "change", "changeset", or "commit" to refer to a set of changes committed together as one conceptual unit, if multiple files were involved, though colloquially most people would refer to changeset 12's effect on file F as "revision 12 of F". These terms occasionally have distinct technical meanings in different version control systems, but the general idea is always the same: they give a way to speak precisely about exact points in time in the history of a file or a set of files (say, immediately before and after a bug is fixed). For example: "Oh yes, she fixed that in revision 10" or "She fixed that in commit fa458b1fac". When one talks about a file or collection of files without specifying a particular revision, it is generally assumed that one means the most recent revision(s) available. "Version" Versus "Revision" The word version is sometimes used as a synonym for "revision", but I will not use it that way in this book, because it is too easily confused with "version" in the sense of a version of a piece of software — that is, the release or edition number, as in "Version 1.0". However, since the phrase "version control" is already standard, I will continue to use it as a synonym for "revision control" and "change control". Sorry. One of open source's most endearing characteristics is that it has two words for everything, and one word for every two things. diff A textual representation of a change. A diff shows which lines were changed and how, plus a few lines of surrounding context on either side. A developer who is already familiar with some code can usually read a diff against that code and understand what the change did, and often even spot bugs. tag or snapshot A label for a particular state of the project at a point in time. Tags are generally used to mark interesting snapshots of the project. For example, a tag is usually made for each public release, so that one can obtain, directly from the version control system, the exact set of files/revisions comprising that release. Tag names are often things like Release_2_0, Delivery_20211009, etc. branch A copy of the project, under version control but isolated so that changes made to the branch don't affect other branches of the project, and vice versa, except when changes are deliberately "merged" from one branch to another (see below). Branches are also known as "lines of development". Even when a project has no explicit branches, development is still considered to be happening on the "main branch", also known as the "main line" or "trunk" or sometimes "master". Branches are a way to keep different lines of development from interfering with each other. For example, a short-term branch is typically used for a bugfix or a minor enhancement. Longer-term branches can also be used for experimental development that would be too destabilizing for the main line. Conversely, a branch can also be used as a safely isolated place in which to stabilize a new release. During the release process, regular development — that is, frequent integration of development branches — would continue uninterrupted in the main branch; meanwhile, on the release branch, no changes are allowed except those approved by the release managers. This way, making a release needn't interfere with ongoing development work. See for a more detailed discussion of branching. merge or port To move a change from one branch to another. This includes merging from the main branch to some other branch, or vice versa. In fact, those are the most common kinds of merges; it is less common to port a change between two non-main branches. See for more on change porting. "Merge" has a second, related meaning: it is what some version control systems do when they see that two people have changed the same file but in non-overlapping ways. Since the two changes do not interfere with each other, when one of the people updates their copy of the file (already containing their own uncommitted changes), the other person's changes will be automatically merged in. This is very common, especially on projects where multiple people are hacking on the same code. When two different changes do overlap, the result is a "conflict"; see below. conflict What happens when two people try to make different changes to the same place in the code. All version control systems automatically detect conflicts, and notify at least one of the humans involved that their changes conflict with someone else's. It is then up to that human to resolve the conflict, and to communicate that resolution to the version control system. revert or reversion To undo an already-committed change to the software. The undoing itself is a versioned event, and is usually done by asking the version control system to reverse the change(s) in questions, rather than by manually making the edits and committing them. lock A way to declare an exclusive intent to change a particular file or directory. For example, "I can't commit any changes to the web pages right now. It seems Alfred has them all locked while he fixes their background images." Not all version control systems even offer the ability to lock, and of those that do, not all require the locking feature to be used. This is because parallel, simultaneous development is the norm, and locking people out of files is (usually) contrary to this ideal. Version control systems that require locking to make commits are said to use the lock-modify-unlock model. Those that do not are said to use the copy-modify-merge model. An excellent in-depth explanation and comparison of the two models may be found at https://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models. In general, the copy-modify-merge model is better for open source development, and all the version control systems discussed in this book support that model. Choosing a Version Control System If you don't already have an opinion about which version control system your project should use, then choose Git (https://git-scm.com/), and host your project's repositories at GitHub (https://github.com/), which offers unlimited free hosting for open source projects. Git is by now the de facto standard in the open source world, as is hosting one's repositories at GitHub. Because so many developers are already comfortable with that combination, choosing it sends the signal that your project is ready for participants. But Git-at-GitHub is not the only viable combination. Many projects host their authoritative Git repository somewhere else, either at another public hosting site (see ) or on their own server (perhaps using one of the open source forge systems listed in ). Some projects use a different version control system entirely, such as Mercurial (https://www.mercurial-scm.org/). There isn't space here for an in-depth exploration of why you might choose something other than Git. If you have a reason to do so, then you already know what that reason is. If you don't, then just use Git (on either GitHub or GitLab). If you find yourself using something other than Git or Mercurial, ask yourself why — because whatever that other version control system is, most other developers won't be familiar with it, and it likely has a smaller community of support around it than those two do. Using the Version Control System The recommendations in this section are not targeted toward a particular version control system, and should be implementable in any of them. Consult your specific system's documentation for details. Version Everything Keep not only your project's source code under version control, but also its web pages, documentation, FAQ, design notes, and anything else that people might want to edit. Keep them right with the source code, in the same repository tree. Any piece of information worth writing down is worth versioning — that is, any piece of information that could change. Things that don't change should be archived, not versioned. For example, an email, once posted, does not change; therefore, versioning it wouldn't make sense (unless it becomes part of some larger, evolving document). The reason to version everything together in one place is so that people only have to learn one mechanism for submitting changes. Often a contributor will start out making edits to the web pages or documentation, and move to small code contributions later, for example. When the project uses the same system for all kinds of submissions, people only have to learn the ropes once. Versioning everything together also means that new features can be committed together with their documentation updates, that branching the code will branch the documentation too, etc. Don't keep generated files under version control. They are not truly editable data, since they are produced programmatically from other files. For example, some build systems create a file named configure based on a template in configure.in. To make a change to the configure, one would edit configure.in and then regenerate; thus, only the template configure.in is an "editable file." Just version the templates — if you version the generated files as well, people will inevitably forget to regenerate them when they commit a change to a template, and the resulting inconsistencies will cause endless confusion. There are technical exceptions to the rule that all editable data should be kept in the same version control system as the code. For example, a project's bug tracker and its wiki hold plenty of editable data, but usually do not store that data in the main version control system.Some development environments have tried to integrate everything into one unified, version-controlled world, e.g., https://fossil-scm.org/ and http://veracity-scm.com/, but so far none of them have gained widespread adoption in the open source world. However, they should still have versioning systems of their own, e.g., the comment history in a bug ticket, and the ability to browse past revisions and view differences between them in a wiki. Browsability The project's repository should be browsable on the Web. This means not only the ability to see the latest revisions of the project's files, but to go back in time and look at earlier revisions, view the differences between revisions, read log messages for selected changes, etc. Browsability is important because it is a lightweight portal to project data. If the repository cannot be viewed through a web browser, then someone wanting to inspect a particular file (say, to see if a certain bugfix had made it into the code) would first have to install version control client software locally, which could turn their simple query from a two-minute task into a half-hour or longer task. Browsability also implies canonical URLs for viewing a particular change (i.e., a commit), and for viewing the latest revision at any given time without specifying its commit identifier. This can be very useful in technical discussions or when pointing people to documentation or examples. If you tell someone a URL that always points to the latest revision of the a file, or to a particular known revision, the communication is completely unambiguous, and avoids the issue of whether the recipient has an up-to-date working copy of the code themselves. Some version control systems come with built-in repository-browsing mechanisms, and in any case all hosting sites offer it via their web interfaces. But if you need to install a third-party tool to get repository browsing, do so; it's worth it. Use Branches to Avoid Bottlenecks Non-expert version control users are sometimes a bit afraid of branching and merging. If you are among those people, resolve right now to conquer any fears you may have and take the time to learn how to do branching and merging. They are not difficult operations, once you get used to them, and they become increasingly important as a project acquires more developers. Branches are valuable because they turn a scarce resource — working room in the project's code — into an abundant one. Normally, all developers work together in the same sandbox, constructing the same castle. When someone wants to add a new drawbridge, but can't convince everyone else that it would be an improvement, branching makes it possible for her to copy the castle, take it off to an isolated corner, and try out the new drawbridge design. If the effort succeeds, she can invite the other developers to examine the result (in GitHub-speak, this invitation is known as a "pull request" — see ). If everyone agrees that the result is good, she or someone else can tell the version control system to move ("merge") the drawbridge from the branch version of the castle over to the main version, usually called the main branch. It's easy to see how this ability helps collaborative development. People need the freedom to try new things without feeling like they're interfering with others' work. Equally importantly, there are times when code needs to be isolated from the usual development churn, in order to get a bug fixed or a release stabilized (see and ) without worrying about tracking a moving target. At the same time, people need to be able to review and comment on experimental work, whether it's happening in the main branch or somewhere else. Treating branches as first-class, publishable objects makes all this possible. Use branches liberally, and encourage others to use them. But also make sure that a given branch is only active for as long as needed. Every active branch is a slight drain on the community's attention. Even those who are not working in a branch still stumble across it occasionally; it enters their peripheral awareness from time to time and draws some attention. Sometimes such awareness is desirable, of course, and commit notices should be sent out for branch commits just as for any other commit. But branches should not become a mechanism for dividing the development community's efforts. With rare exceptions, the eventual goal of most branches should be to merge their changes back into the main line and disappear, as soon as possible. Singularity of Information Merging has an important corollary: never commit the same change twice. That is, a given change should enter the version control system exactly once. The revision (or set of revisions) in which the change entered is its unique identifier from then on. If it needs to be applied to branches other than the one on which it entered, then it should be merged from its original entry point to those other destinations — as opposed to committing a textually identical change, which would have the same effect in the code, but would make accurate bookkeeping and release management much harder. The practical effects of this advice differ from one version control system to another. In some systems, merges are special events, fundamentally distinct from commits, and carry their own metadata with them. In others, the results of merges are committed the same way other changes are committed, so the primary means of distinguishing a "merge commit" from a "new change commit" is in the log message. In a merge's log message, don't repeat the log message of the original change. Instead, just indicate that this is a merge, and give the identifying revision of the original change, with at most a one-sentence summary of its effect. If someone wants to see the full log message, she should consult the original revision. Non-duplication makes it easier to be sure when one has tracked down the original source of a change: when you're looking at a complete log message that doesn't refer to a some other merge source, you can know that it must be the original change, and treat it accordingly. The same principle applies to reverting a change. If a change is withdrawn from the code, then the log message for the reversion should merely state that some specific revision(s) is being reverted, and explain why. It should not describe the semantic code change that results from the reversion, since that can be derived by consulting the original log message and diff. (And if you're using a system in which editing or annotating past log messages is possible, go back and fix the original change's log message to mention the future reversion.) All of the above implies that you should use a consistent syntax for referring to changes. This is helpful not only in log messages, but in emails, the bug tracker, and elsewhere. In Git and Mercurial, the syntax is usually "commit c39fcac089" (where the commit hash code on the right is long enough to be unique in the relevant context). In Subversion, revision numbers are linearly incremented integers and the standard syntax for, say, revision 1729 is "r1729" (a syntax you'll see in some examples in this book). Other systems have their own standard syntaxes for expressing the changeset name. Whatever the appropriate syntax is for your system, encourage people to use it consistently when referring to changes. Consistent expression of change names makes project bookkeeping much easier (as we will see in and in ). Since a lot of this bookkeeping may be done by developers who must also use some different bookkeeping method for internal projects at their company, it needs to be as easy as possible. See also . Authorization Even if your project's version control system or hosting site allows technical enforcement of developer's activity areas — e.g., permitting them to push commits in some places but not others — it's usually better to not to use it. Automated enforcement is rarely necessary, and may even be harmful. Instead, most projects use an honor system: when a person is granted commit access, even for a sub-area of the project, what they actually receive is the physical ability to commit anywhere in the authoritative repository. They're just asked to keep their commits in their area. (See for how projects decide who can put changes where.) Remember that there is little real risk here: the repository provides an audit trail, and in an active project, all commits are reviewed anyway. If someone commits where they're not supposed to, others will notice it and say something. If a change needs to be undone, that's simple enough — everything's under version control anyway, so just revert. There are several advantages to this more relaxed approach. First, as developers expand into other areas (which they usually will if they stay with the project), there is no administrative overhead to granting them wider privileges. Once the decision is made, the person can just start committing in the new area right away. Second, it allows such expansion to be done in a fine-grained manner. Generally, a committer in area X who wants to expand to area Y will start posting patches against Y and asking for review. If someone who already has commit access to area Y sees such a patch and approves of it, she can just tell the submitter to commit the change directly (mentioning the approver's name in the log message, of course). That way, the commit will come from the person who actually wrote the change, which is preferable from both an information management standpoint and from a crediting standpoint. Last, and perhaps most important, using the honor system encourages an atmosphere of trust and mutual respect. Giving someone commit access to a subdomain is a statement about their technical preparedness — it says: "We see you have expertise to make commits in a certain domain, so go for it." But imposing strict authorization controls says: "Not only are we asserting a limit on your expertise, we're also a bit suspicious about your intentions." That's not the sort of statement you want to make if you can avoid it. Bringing someone into the project as a committer is an opportunity to initiate them into a circle of mutual trust. A good way to do that is to give them more power than they're supposed to use, then inform them that it's up to them to stay within agreed-on limits. The Subversion project has operated on this honor system way for over two decades, with more than 50 full committers and over 100 partial committers as of this writing. (Not all of them are active at any given time, but that just reinforces the point I'm making here.) The only distinction the system enforces by technical means is the global distinction between committers and everyone else. All further subdivisions are maintained solely by human discretion. Yet the project never had a serious problem with someone deliberately committing outside their domain. Once or twice there's been an innocent misunderstanding about the extent of someone's commit privileges, but it's always been resolved quickly and amiably. Obviously, in situations where self-policing is impractical, you must rely on hard authorization controls. But such situations are rare. Even when there are millions of lines of code and hundreds or thousands of developers, a commit to any given code module should still be reviewed by those who work on that module,See . and they can recognize if someone committed there who wasn't supposed to. If regular commit review isn't happening, then the project has bigger problems to deal with than the authorization system anyway. In summary, don't spend too much time fiddling with technically-enforced authorization controls unless you have a specific reason to. It usually won't bring much tangible benefit, and there are advantages to relying on human controls instead. None of this should be taken to mean that the socially-enforced restrictions themselves are unimportant, of course. It would be bad for a project to encourage people to commit in areas where they're not qualified. Furthermore, in many projects, full (project-wide) commit permission has a special corollary status: it implies voting rights on project-wide questions. This political aspect of commit areas is discussed more in . Receiving and Reviewing Contributions These days the primary means by which changes — code contributions, documentation contributions, etc — reach a project is via "pull requests" (described in more detail below), though some older projects still prefer to receive a patch posted to a mailing list or attached in a bug tracker. Once a contribution arrives, it typically goes through a review-and-revise process, involving communication between the contributor and various members of the project. At some point during the process, if all goes well, the contribution is eventually deemed ready for incorporation into the main codebase and is merged in. This does not mean that discussion and work on the contribution cease at that point. The contribution may well continue to be improved, it's just that that improvement now takes place within the project rather than off to one side. The moment when a code change is merged to the project's main branch is when it becomes officially part of the project. It is no longer the sole responsibility of whoever submitted it; it is the collective responsibility of the project as a whole. Pull Requests / Merge Requests A pull request (also called a merge request) is a request from a contributor to the project for a certain change to be "pulled" (i.e., merged) into the project — usually into the project's main branch, though sometimes pull requests are targeted at some other branch. The change is offered in the form of the difference between the contributor's copy (or "clone") of the project and the project's own copy. The two copies share most of their change history, of course, but at a certain point the contributor's diverges — it contains the change the contributor has implemented and that the project does not have yet. The project may also have moved on since the clone was made and contain new changes that the contributor does not have, but these can be ignored for the purposes of discussion here. A pull request is directional: it is for sending changes the contributor has that the receiver does not, and is not about changes flowing in the reverse direction. In practice, the two copies are usually stored on the same hosting site, and the contributor can initiate the pull request by simply clicking a button. Creating a pull request automatically creates a tracking ticket that everyone can see, so that a pending pull request can use the same workflow as any other issue. Some projects also have contributions enter through a collaborative code review tool, such as https://en.wikipedia.org/wiki/Gerrit_%28software%29 or https://www.reviewboard.org/, and these days project hosting sites include code-review features directly in their pull request management interface anyway. Pull requests are so frequent a topic of discussion that you will often see people abbreviate them as "PR", as in "Yeah, your proposed fix sounds good. Would you post a PR and assign it to me for review please?" For newcomers, however, the term "pull request" is sometimes confusing, however, because it sounds like it is a request by the contributor to pull a change from someone else, when actually it is a request the contributor makes to the project to pull the change from the contributor. Some systems (e.g., GitLab) use the term "merge request" to mean the same thing. I actually find that term much more natural, but alas, "pull request", as popularized by GitHub, appears to have won, and we all need to just get used to it. I'm not bitter. Commit Notifications / Commit Emails Every commit to the repository — or every push containing a group of commits — should generate a notification that goes out to a subscribable forum, such as an email sent to a mailing list. The notification should show who made the change, when they made it, what files and directories changed, and the actual content of the change. The most common form of commit notifications is to just subscribe to the repository itself, since the hosting platform will send out notifications — usually by email, sometimes also by other means — for interesting activity. Each developer gets to customize what counts as interesting for them. Alternatively, some projects have a mailing list dedicated to commit notifications. Each commit (or push, or merge to the main branch) sends an automatic email to that list. Note that this is a special mailing list devoted to commit emails, separate from mailing lists to which humans post. Whatever forms of commit notification your project arranges, each notification should make it easy for developers to proceed from there to reviewing that commit or changeset (see ). Whether your project should use an email list — either in addition to or instead of or some other kind of subscribable notifications — depends on the demographics of your developers, but when in doubt, email is usually a good default choice. The specifics of setting up notifications vary depending on the version control system, but usually there's a script or other packaged facility for doing it. If you're having trouble finding it, try looking for documentation on hooks (or sometimes triggers), specifically a post-merge hook or post-commit hook. These hooks are a general means of launching automated tasks in response to receiving changes. The hook is fed all the information about the merge, and is then free to use that information to do anything — for example, to send out an email. With pre-packaged commit email systems, you may want to modify some of the default behaviors: Some commit mailers don't include the actual diffs in the email, but instead provide a URL to view the change on the web using the repository browsing system. While it's good to provide the URL, so the change can be referred to later, it is also important that commit emails include the diffs themselves. Reading email is already part of people's routine, so if the content of the change is visible right there in the commit email, developers will review the commit on the spot, without leaving their mail reader. If they have to click on a URL to review the change, most won't do it, because that requires a new action instead of a continuation of what they were already doing. Furthermore, if the reviewer wants to ask something about the change, it's vastly easier to hit reply-with-text and simply annotate the quoted diff than it is to visit a web page and laboriously cut-and-paste parts of the diff from web browser to email client. Of course, if the diff is huge, such as when a large body of new code has been added to the repository, then it makes sense to omit the diff and offer only the URL. Most commit mailers can do this kind of size-limiting automatically. If yours can't, then it's still better to include diffs, and live with the occasional huge email, than to leave the diffs off entirely. Convenient reviewing and commenting is a cornerstone of cooperative development, and much too important to do without. The commit emails should set their Reply-to header to the regular development list, not the commit email list. That is, when someone reviews a commit and writes a response, their response should be automatically directed toward the human development list, where technical issues are normally discussed. There are a few reasons for this. First, you want to keep all technical discussion on one list, because that's where people expect it to happen, and because that way there's only one archive to search. Second, there might be interested parties not subscribed to the commit email list. Third, the commit email list advertises itself as a service for watching commits, not for watching commits and having occasional technical discussions. Those who subscribed to the commit email list did not sign up for anything but commit emails; sending them other material via that list would violate an implicit contract. Note that this advice to set Reply-to does not contradict the recommendations in . It's always okay for the sender of a message to set Reply-to. In this case, the sender is the version control system itself, and it sets Reply-to in order to indicate that the appropriate place for replies is the development mailing list, not the commit list. Bug Tracker Bug tracking is a broad topic, and various aspects of it are discussed throughout this book. Here I'll concentrate mainly on the features your project should look for in a bug tracker, and how to use them. But to get to those, we have to start with a policy question: exactly what kind of information should be kept in a bug tracker anyway? The term bug tracker is misleading. Bug tracking systems are used to track not only bug reports, but new feature requests, one-time tasks, unsolicited patches — really anything that has distinct beginning and end states, with optional transition states in between, and that accrues information over its lifetime. For this reason, bug trackers are also called issue trackers, ticket trackers, defect trackers, artifact trackers, request trackers, etc. In this book, I'll generally use the word ticket to refer the items in the tracker's database, because that distinguishes between the behavior that the user encountered or proposed — that is, the bug or feature itself — and the tracker's ongoing record of that discovery, diagnosis, discussion, and eventual resolution. But note that many projects use the word bug or issue to refer to both the ticket itself and to the underlying behavior or goal that the ticket is tracking. (Those usages are in fact more common than "ticket"; it's just that in this book we need to be able to make this distinction explicitly in a way that projects themselves usually don't.) The classic ticket life cycle looks like this: Someone files the ticket. They provide a summary, an initial description (including a reproduction recipe, if applicable; see for how to encourage good bug reports), and whatever other information the tracker asks for. The person who files the ticket may be totally unknown to the project — bug reports and feature requests are as likely to come from the user community as from the developers. Once filed, the ticket is in what's called an open state. Because no action has been taken yet, some trackers also label it as unverified and/or unstarted. It is not assigned to anyone; or, in some systems, it is assigned to a fake user to represent the lack of real assignation. At this point, it is in a holding area: the ticket has been recorded, but not yet integrated into the project's consciousness. Others read the ticket, add comments to it, and perhaps ask the original filer for clarification on some points. The bug gets reproduced. This may be the most important moment in its life cycle. Although the bug is not actually fixed yet, the fact that someone besides the original filer was able to make it happen proves that it is genuine, and, no less importantly, confirms to the original filer that they've contributed to the project by reporting a real bug. (This step and some of the others don't apply to feature proposals, task tickets, etc, of course. But most filings are for genuine bugs, so we'll focus on that here.) The bug gets diagnosed: its cause is identified, and if possible, the effort required to fix it is estimated. Make sure these things get recorded in the ticket; if the person who diagnosed the bug suddenly has to step away from it for a while, someone else should be able to pick up where she left off. In this stage, or sometimes in the previous one, a developer may "take ownership" of the ticket and assign it to herself ( examines the assignment process in more detail). The ticket's priority may also be set at this stage. For example, if it is so important that it should delay the next release, that fact needs to be identified early, and the tracker should have some way of noting it. The ticket gets scheduled for resolution. Scheduling doesn't necessarily mean naming a date by which it will be fixed. Sometimes it just means deciding which future release (not necessarily the next one) the bug should be fixed by, or deciding that it need not block any particular release. Scheduling may also be dispensed with if the bug is quick to fix. The bug gets fixed (or the task completed, or the patch applied, or whatever). The change or set of changes that fixed it should be discoverable from the ticket. After this, the ticket is closed and/or marked as resolved. There are some common variations on this life cycle. Often a ticket is closed very soon after being filed, because it turns out not to be a bug at all, but rather a misunderstanding on the part of the user. As a project acquires more users, more and more such invalid tickets will come in, and developers will close them with increasingly short-tempered responses. Try to guard against the latter tendency. It does no one any good, as the individual user in each case is not responsible for all the previous invalid tickets; the statistical trend is visible only from the developers' point of view, not from the user's. (In we'll look at techniques for reducing the number of invalid tickets.) Also, if different users are experiencing the same misunderstanding over and over, it might mean that some aspect of the software needs to be redesigned. This sort of pattern is easiest to notice when there is a dedicated issue manager monitoring the bug database; see . Another common life event for the ticket to be closed as a duplicate soon after Step 1. A duplicate is when someone reports something that's already known to the project. Duplicates are not confined to open tickets: it's possible for a bug to come back after having been fixed (this is known as a regression), in which case a reasonable course is to reopen the original ticket and close any new reports as duplicates of the original one. The bug tracking software keeps track of this relationship bidirectionally, so that reproduction information in the duplicates is available to the original ticket, and vice versa. A third variation is for the developers to close the ticket, thinking they have fixed it, only to have the original reporter reject the fix and reopen it. This is usually because the developers simply don't have access to the environment necessary to reproduce the bug, or because they didn't test the fix using the exact same reproduction recipe as the reporter. Aside from these variations, there may be other small details of the life cycle that vary depending on the tracking software. But the basic shape is the same, and while the life cycle itself is not specific to open source software, it has implications for how open source projects use their bug trackers. The tracker is as much a public face of the project as the repository, mailing lists or web pages.Indeed, as discusses, the bug tracker is actually the first place to look, even before the repository, when you're trying to evaluate a project's overall health. Anyone may file a ticket, anyone may look at a ticket, and anyone may browse the list of currently open tickets. It follows that you never know how many people are waiting to see progress on a given ticket. While the size and skill of the development community constrains the rate at which tickets can be resolved, the project should at least try to acknowledge each ticket the moment it appears. Even if the ticket lingers for a while, a response encourages the reporter to stay involved, because she feels that a human has registered what she has done (remember that filing a ticket usually involves more effort than, say, posting an email). Furthermore, once a ticket is seen by a developer, it enters the project's consciousness, in the sense that the developer can be on the lookout for other instances of the ticket, can talk about it with other developers, etc. This centrality to the life of the project implies a few things about trackers' technical features: The tracker should be connected to email, such that every change to a ticket, including its initial filing, causes a notification mail to go out to some set of appropriate recipients. See later in this chapter for more on this. The form for filing tickets should have a place to record the reporter's email address or other contact information, so she can be contacted for more details.For logged-in users whom the system already knows, these details are automatically filled in, of course. But if possible, it should not require the reporter's email address or real identity, as some people prefer to report anonymously. See for more on the importance of anonymity. The tracker should have APIs. I cannot stress the importance of this enough. If there is no way to interact with the tracker programmatically, then in the long run there is no way to interact with it scalably. APIs provide a route to customizing the behavior of the tracker by, in effect, expanding it to include third-party software. Instead of being just the specific ticket tracking software running on a server somewhere, it's that software plus whatever custom behaviors your project implements elsewhere and plugs in to the tracker via the APIs. Also, if your project uses a proprietary ticket tracker, as is becoming more common now that so many projects host their code on proprietary canned hosting sites and thus use that site's built-in tracker, APIs provide a way to avoid being locked in to that hosting platform. You can, in theory, take the ticket history with you if you choose to go somewhere else (you may never exercise this option, but think of it as insurance — and some projects have actually done it). Fortunately, the ticket trackers of most major hosting sites have APIs. Interaction with Email Most trackers now have at least decent email integration features: at a minimum, the ability to create new tickets by email, the ability to "subscribe" to a ticket to receive emails about activity on that ticket, and the ability to add new comments to a ticket by email. Some trackers even allow one to manipulate ticket state (e.g., change the status field, the assignee, etc) by email, and for people who use the tracker a lot — such as an issue manager (see ) — that can make a huge difference in their ability to stay on top of tracker activity and keep things organized. The tracker email feature that is likely to be used by everyone, though, is simply the ability to read a ticket's activity by email and respond by email. This is a valuable time-saver for many people in the project, since it makes it easy to integrate bug traffic into one's daily email flow. But don't let this integration give anyone the illusion that the total collection of bug tickets and their email traffic is the equivalent of the development mailing list. It's not, and discusses why this is important and how to manage the difference. Pre-Filtering the Bug Tracker Most ticket databases eventually suffer from the same problem: a crushing load of duplicate or invalid tickets filed by well-meaning but inexperienced or ill-informed users. The first step in combating this trend is usually to put a prominent notice on the front page of the bug tracker, explaining how to tell if a bug is really a bug, how to search to see if it's already been reported, and finally, how to effectively report it if one still thinks it's a new bug. This will reduce the noise level for a while, but as the number of users increases, the problem will eventually come back. No individual user can be blamed for it. Each one is just trying to contribute to the project's well-being, and even if their first bug report isn't helpful, you still want to encourage them to stay involved and file better tickets in the future. In the meantime, though, the project needs to keep the ticket database as free of junk as possible. The two things that will do the most to prevent this problem are: making sure there are people watching the bug tracker who have enough knowledge to close tickets as invalid or duplicates the moment they come in, and requiring (or strongly encouraging) users to confirm their bugs with other people before filing them in the tracker. The first technique seems to be used universally. Even projects with huge ticket databases (say, the Debian bug tracker at https://bugs.debian.org/, which contained 996,003 tickets as of this writing) still arrange things so that someone sees each ticket that comes in. It may be a different person depending on the category of the ticket. For example, the Debian project is a collection of software packages, so Debian automatically routes each ticket to the appropriate package maintainers. Of course, users can sometimes misidentify a ticket's category, with the result that the ticket is sent to the wrong person initially, who may then have to reroute it. However, the important thing is that the burden is still shared — whether the user guesses right or wrong when filing, ticket watching is still distributed more or less evenly among the developers, so each ticket is able to receive a timely response. The second technique is less widespread, probably because it's harder to automate. The essential idea is that every new ticket gets "buddied" into the database. When a user thinks he's found a problem, he is asked to describe it on one of the mailing lists, or in a chat room, and get confirmation from someone that it is indeed a bug. Bringing in that second pair of eyes early can prevent a lot of spurious reports. Sometimes the second party is able to identify that the behavior is not a bug, or is fixed in recent releases. Or she may be familiar with the symptoms from a previous ticket, and can prevent a duplicate filing by pointing the user to the older ticket. Often it's enough just to ask the user "Did you search the bug tracker to see if it's already been reported?" Many people simply don't think of that, yet are happy to do the search once they know someone's expecting them to. The buddy system can really keep the ticket database clean, but it has some disadvantages too. Many people will file solo anyway, either through not seeing or through disregarding the instructions to find a buddy for new tickets. Thus it is still necessary for some experienced participants to watch the ticket database. Furthermore, because most new reporters don't understand how difficult the task of maintaining the ticket database is, it's not fair to chide them too harshly for ignoring the guidelines. The watchers must be vigilant, yet exercise restraint in how they bounce unbuddied tickets back to their reporters. The goal is to train each reporter to use the buddying system in the future, so that there is an ever-growing pool of people who understand the ticket-filtering system. On seeing an unbuddied ticket, the ideal steps are: Immediately respond to the ticket, politely thanking the user for filing, but pointing them to the buddying guidelines (which should, of course, be prominently posted on the web site). If the ticket is clearly valid and not a duplicate, approve it anyway, and start it down the normal life cycle. After all, the reporter's now been informed about buddying, so there's no point closing a valid ticket and wasting the work done so far. Otherwise, if the ticket is not clearly valid, close it, but ask the reporter to reopen it if they get confirmation from a buddy. When they do, they should put a reference to the confirmation thread (e.g., a URL into the mailing list archives). Remember that although this system will improve the signal/noise ratio in the ticket database over time, it will never completely stop the misfilings. The only way to prevent misfilings entirely is to close off the bug tracker to everyone but developers — a cure that is almost always worse than the disease. It's better to accept that cleaning out invalid tickets will always be part of the project's routine maintenance, and to try to get as many people as possible to help. See also . Real-Time Chat Systems Many projects offer real-time chat rooms in which developers can have fast-turnaround conversations with each other and with users. Such conversations often precede a bug report or some other kind of more formal, tracked contribution. For decades, the standard real-time chat system for open source projects was Internet Relay Chat (IRC), which predates the World Wide Web and uses a text-based interface and command language. Starting around 2014-2015, a number of open source projects began trying out newer, web-browser-friendly chat systems, in particular the open source platforms https://zulip.org/, https://mattermost.org/, https://rocket.chat/, and the MatrixMatrix is actually a protocol and an open source reference implementation. The protocol is supported by an increasing number of chat applications, including IRC as well as more modern systems. In the words of Julian Foad in https://issues.apache.org/jira/browse/SVN-525#comment-17286477, "Matrix is a 'spiritual successor' to IRC, and truly Open, federated, and standardized. ... In my opinion Matrix is very much the Right Way forward for all sorts of reasons." For more information, see https://matrix.org/ and https://en.wikipedia.org/wiki/Matrix_(protocol). protocol. (A few projects also experimented with the proprietary online chat service Slack when it was new, but Slack hasn't been widely adopted by open source projects and I wouldn't recommend it for them. In a post written when that early experimentation was still under way, Drew DeVault lists some of the reasons why Slack isn't suitable: https://drewdevault.com/2015/11/01/Please-stop-using-slack.html. I don't know whether any of these new systems will emerge as the long-term default choice for open source projects. Try looking at the open source chat systems used by similar projects and use that as guidance in choosing yours. Matrix compatibility (sometimes referred to as Matrix "bridging" or having a "Matrix bridge") is a good property to keep in mind, and if possible IRC bridging too, since some developers still like to use their IRC clients with non-IRC server applications. Chat Rooms and Growth A chat server is usually divided into virtual chat rooms. The chat application may call these "channels", or "streams", or something else, but the concept is generally the same: a chat room is a shared space in which everyone who is in that room can see every message posted to the room. Every project maintains a certain set of advertised, topic-specific public rooms; these are the entry points into chat for new participants.When two or a few users wish to chat privately, it is sometimes said that they create a "private room". Such rooms are usually temporary. Some projects maintain a "welcome" or "general" room specifically for newcomers to start out in, with current project members watching that room in order to greet new arrivals, but it's also fine to just have new people come directly into the regular rooms to ask their questions too. Exactly how many rooms to have, and for what topics, will depend on your project, but it's best to start out with a small number of rooms — even just one — and only add more when it becomes clearly necessary. Much of the value of real-time chat comes from people being together in the same rooms and serendipitously seeing conversations between others. discusses when and how to divide into more rooms. Nick-Flagging and Notifications Users who are new to such chat systems usually need some time to learn the conventions of real-time written communications. While each project has its own local customs, there is at least one convention that seems to be common in almost all projects: nick-flagging for notification. A user's nick is their nickname, their handle in the chat system. It might or might not be some form of their real name, but in any case it is how they are identified in chat. When you want to speak to that person, you prefix your message with her handle (perhaps followed by a separator character such as a colon). Her chat client, upon seeing her handle used in a message, notifies her by whatever means she has configured — perhaps by flashing a notification popup on her screen (even when she does not have the chat window in front of her right then), or perhaps via an audible signal. This notification only happens for messages that contain her handle, not for other messages. She may still see those other messages go by if she happens to be in that chat room right then — developers often "lurk" in a chat room just to see what's going on — but thanks to nick-flagging she can easily tell the difference between messages addressed to her and other messages. A message can contain multiple nicks, of course, in which case each of the corresponding people would be notified. The ability for users to separate the conversations they are involved in from other conversations is key to successful use of real-time chat in open source projects. It is how a large number of developers can be in a "room" and all talk "together" without getting their different streams of conversation entangled. Each developer can tell which messages are specifically requesting her attention and which ones are not. It is analogous to an observation Deaf people sometimes make about the advantage of communicating with sign language instead of spoken language in a crowded room: as long as you have a clear line of sight to your interlocutor, the "noisiness" of the room (whether with signed or spoken language) does not interfere much with your ability to maintain the conversation. Similarly, a chat room can be very busy, but as long as everyone follows the convention of nick-flagging, people can simultaneously participate in their own chats and keep an eye on whatever else they're interested in, at least to the limit of their attentional capacity.See http://www.rants.org/2013/01/09/the-irc-curmudgeon/ for a more detailed examination of nick-flagging and some examples. Paste Rooms and Paste Sites Normally, the fact that a chat room is a shared space is a good thing, as it allows people to jump into a conversation when they think they have something to contribute, and allows spectators to learn by watching. But it becomes problematic when someone has to provide a large quantity of information at once, such as a large error message or a transcript from a debugging session, because pasting too many lines of output into the room may disrupt other conversations. One solution is to have a dedicate chat room just for pastes. The user posts their transcript there, then grabs the URL to that specific messageEvery message posted in an online chat has its own unique URL permalink, just as every comment in, say, a bug ticket does. See for more about this principle and its implications. and posts the URL in the original chat room, nick-flagging whoever should see it. Another solution is to set up a separate pastebin site, which is separate from the chat service operates essentially as described above: the user posts their transcript to the paste site to create a new paste, which in turn has its own unique URL, which the user then presents back in the chat room. Historically there have also been many public pastebin sites, so you might not need to set up a dedicated one for your project, but note that public pastebin sites tend to be short-lived (my guess is that they get spammed a lot and end up being expensive to maintain). As of this writing in early 2022, https://hastebin.com/ is up and running. If you do need to set up your own, there are many open source codebases available (including the code that backs hastebin: see https://hastebin.com/about.md. Chat Bots Chat rooms can have non-human members too, so-called bots, that provide automated services such as answering frequently-asked questions. Typically, a bot is addressed just like any other member of the channel, that is, commands are delivered by "speaking to" the bot. No special server privileges are required to run a bot. A bot is just like any other user joining a channel. People who spend enough time in chat learn how to manipulate these bots and use them to help others. For example, when one user comes into a room and asks a common question, another more experienced user may issue a terse command to the local bot telling it to provide that user with a specific detailed answer that the bot has been previously told to remember. If your chat rooms tend to get the same questions over and over, I highly recommend setting up a bot. Only a small percentage of channel users will acquire the expertise needed to manipulate the bot, but those users will answer a disproportionately high percentage of questions, because the bot enables them to respond so much more efficiently. The exact command set and behaviors will differ among bot implementations; unfortunately, the diversity of bot command languages seems to be rivaled only by the diversity of wiki syntaxes. Commit Notifications in Chat One particular kind of bot (also known as an "integration") watches the project's version control repository and broadcasts commit activity to the relevant chat rooms as it happens. While this offers less technical utility than subscription-based commit notifications (see ), since interested observers might or might not be around when a particular commit pops up in the room, it is of immense social utility. It gives people the sense of being part of something alive and active — they see progress happening right before their eyes. Because the notifications appear in a shared space, people in the chat room will often react in real time, congratulating the committer, or asking a question related to the commit, or even reviewing the commit and commenting on it on the spot. The technical details up of setting this up are beyond the scope of this book, but I recommend learning how to enable it in your project's chat platform. It's worth the effort. Most of the major hosting sites make this integration fairly easy to set up. In addition to "integration", some key words to try in a search are "hook", "trigger", and "extension". Wikis A well-run wiki can be a wonderful thing for users and developers. Wikis offer the lowest possible barrier-to-entry for those seeking to contribute to the project. You just click and edit — the wiki software will keep track of the change, make sure you get credited, notify anyone who needs to be notified, and immediately publish the new content to the world. However, wikis also require some centralized effort to maintain. When open source software project wikis go bad, they usually go bad for the same reasons: lack of consistent organization and editing (leading to a mess of outdated and redundant pages) and lack of clarity on who the target audience is for a given page or section. From the outset, try to have a clear page organization strategy and even a pleasing visual layout, so that visitors (i.e., potential editors) will instinctively know how to fit their contributions in. Make sure the intended audience is clear at all times to all editors. Most importantly, document these standards in the wiki itself and point people to them, so editors have somewhere to go for guidance. Too often, wiki administrators fall victim to the fantasy that because hordes of visitors are individually adding high quality content to the site, the sum of all these contributions must therefore also be of high quality. That's not how collaborative editing works. Each individual page or paragraph may be good when considered by itself, but it will not be good if embedded in a disorganized or confusing whole. In general, wikis will amplify any failings that are present from early on, since contributors tend to imitate whatever patterns they see in front of them. So don't just set up the wiki and hope everything falls into place. Prime it with well-written content, so people have a template to follow. The shining example of a well-run wiki is Wikipedia, of course, but in many ways it's also a poor example because it gets so much more editorial attention than any other wiki in the world. Still, if you examine Wikipedia closely, you'll see that its administrators laid a very thorough foundation for cooperation. There is extensive documentation on how to write new entries, how to maintain an appropriate point of view, what sorts of edits to make, what edits to avoid, a dispute resolution process for contested edits (involving several stages, including eventual arbitration), and so forth. It also has authorization controls, so that if a page is the target of repeated inappropriate edits, senior editors can lock it down until the problem is resolved. In other words, they didn't just throw some templates onto a web site and hope for the best. Wikipedia works because its editors give careful thought to getting thousands of strangers to tailor their writing to a common vision. While you may not need the same level of preparedness to run a wiki for a free software project, the spirit is worth emulating. Wikis and Spam Never allow open, anonymous editing on your wiki. The days when that was possible are long gone now; today, any open wiki other than Wikipedia will be covered completely with spam in approximately 3 milliseconds. (Wikipedia is an exception only because it has an unusually large number of editors willing to clean up spam quickly, and because it has a well-funded organization behind it devoted to fighting spam using various large-scale monitoring techniques not practically available to smaller projects.) All edits in your project's wiki should come from registered users; if your wiki software doesn't already enforce this by default, then configure it to enforce that. Even then you may need to keep watch for spam edits from users who registered under false pretenses for the purpose of spamming.You may be able to allow editing by non-registered users if you put some spam countermeasures in place. For example, the Emacs Wiki (https://www.emacswiki.org/) allows editing by anyone, but to submit your edit you must answer a question that a bot is unlikely to be able to answer accurately. Choosing a Wiki If your project is on GitHub or some other free hosting site, it's usually best to use the built-in wiki feature that most such sites offer. That way your wiki will be automatically integrated with your repository or other project permissions, and you can rely on the site's user account system instead of having a separate registration system for the wiki. If you are setting up your own wiki, then you're free to choose which one, and fortunately there are plenty of good free software wiki implementations available. I've had good experience with DokuWiki (https://www.dokuwiki.org/dokuwiki), but there are many others. There is a wonderful tool called the Wiki Choice Wizard at http://www.wikimatrix.org/ that allows you to specify the features you care about (an open source license can be one of them) and then view a chart comparing all the wiki software that meets those criteria. Another good resource is Wikipedia's own page comparing different wikis: https://en.wikipedia.org/wiki/Comparison_of_wiki_software. I do not recommend using MediaWiki (https://www.mediawiki.org) as the wiki software for most projects. MediaWiki is the software on which Wikipedia itself runs, and while it is very good at that, its administrative facilities are tuned to the needs of a site unlike any other wiki on the Net — and actually not so well-tuned to the needs of smaller editing communities. Many projects are tempted to choose MediaWiki because they think it will be easier for users who already know its editing syntax from having edited at Wikipedia, but this turns out to be an almost non-existent advantage for several reasons. First, wikis in general, including Wikipedia, are tending toward rich-text in-browser editing anyway, so that no one really needs to learn the underlying wiki syntax unless they aim to be a power user. Second, many other wikis offer a MediaWiki-syntax plugin, so you can have that syntax anyway if you really want it. Third, for those who will use a plaintext syntax instead of rich-text editing, it's better to use a standardized generic markup format like Markdown (https://daringfireball.net/projects/markdown/), which is available in many wikis either natively or via a plugin, than to use any flavor of wiki syntax. If you support Markdown, then people can edit in your wiki using the same markup syntax they already know from GitHub and other popular tools. Translation Infrastructure Various online platforms now exist to help automate the organization and integration of human-language translation work in open source projects. "Translation work" here means not just the process of translating the software's documentation, but also its run-time user interface, error messages, etc into different languages, so that each user can interact with the software in their preferred language. (See for more about this process.) It is not strictly necessary to use a separate translation platform at all. Your translators could work directly in the project's repository, like any other developer. But because translation is a specialized skill, and translators' methods are basically the same from project to project, the process is quite amenable to being made more efficient through the use of dedicated tools. Web-based translation platforms make it easier for translators to get involved by removing the requirement that a translator (who may have linguistic expertise but not development expertise) be comfortable with the project's development tools, and by providing a working environment that is specially optimized for translation rather than for general code development. Until 2013, the obvious recommendation for a platform would have been https://transifex.com/, which was both the premier software translation site and was open source software itself. However, its main corporate sponsors switched to a closed, proprietary version in March 2013,See https://github.com/transifex/transifex-old-core/issues/206#issuecomment-15243207 for more. and development of the open source version stopped then. Transifex still offers zero-cost service for open source projects, as does a competing proprietary platform called Lokalise. But your translators may prefer to invest their time in learning a fully open source platform, and there are several to choose from: https://weblate.org/, http://zanata.org/, https://translatewiki.net/, and https://translations.launchpad.net/ (and there are probably others I don't know about, so look around and ask in other translation communities). Internationalization (i18n) and Localization (l10n) The process of adapting software user interfaces for different groups of humans involves two terms that are easily confused: "internationalization" and "localization". Internationalization refers to the process of putting software source code into a form that allows the program to be translated (or "localized" — see below). It includes, among other things, marking all user-visible strings (interface texts, error messages, etc) so that they can be automatically replaced by translated versions when the software is deployed in a "locale". The translations are supplied by humans, but internationalization is what allows those translations to be automatically integrated into the software. Thus, internationalization does not involve performing any actual translation. Rather, it's about putting the program into a form that allows translators, or "localizers", to get to work. i18n is a common abbreviation for "internationalization", since the word is so long to type. The "18" refers to the number of letters between the initial "i" and then final "n". Localization, meanwhile, refers to supplying an actual translation into a specific language, as well as to other changes needed for that audience (for example, conversion of measurement units, monetary units, etc). Because it may involve more than just language change, the term is "localization" rather than "translation", and the destination — the intended audience — is called a locale. A locale does not always correspond to geographic area or a political grouping. Localizing a program for Yiddish, for example, doesn't say anything about where it will be run nor by whom, other than that they know Yiddish. l10n is likewise a common abbreviation for "localization", using the same scheme as "i18n". See https://en.wikipedia.org/wiki/Internationalization_and_localization for more information about i18n and l10n. Social Networking Services Perhaps surprisingly for such social endeavors, open source projects typically make only limited use of what most people think of as "social networking" services. But this seeming omission is really a matter of definition: most of the infrastructure that open source projects have been using for decades, since long before "social networking" became a recognized term, is actually social networking software even if it isn't called that. The reason open source projects tend not to have much presence as projects on, say, Facebook is just that the services Facebook offers are not well-tuned to what open source projects need. On the other hand, as you might expect, the infrastructure these projects have been using and improving for many years is quite well-tuned to their needs. Most projects do use Twitter and similar microblog services, because sending out short quips and announcements that can be easily forwarded and replied to is a good way for a project to have conversations with its community; see LibreOffice's "@AskLibreOffice" tweet stream at https://twitter.com/AskLibreOffice for an example of this. Projects also sometimes use services such as https://www.eventbrite.com/ and https://www.Meetup.com/ to arrange in-person meetings of users and developers. But beyond lightweight services such as those, most free software projects do not maintain a large presence on mainstream social media platforms (though individual developers sometimes do, of course, and often discuss the project there). The reward the project gets in exchange for that investment of time and attention appears not to be high enough to be worth the effort.